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A cross-flow theory for the normal force on inclined 
bodies of revolution of large thickness ratio 

By R. N. COX 
Armament Research and Development Establzkhment, Fort Halstead, Kent 

(Recaked 28 February 1957) 

In the Munk-Jones cross-flow theory for slender bodies of revolution 
(Munk 1924; Jones 1946), the cross force on an inclined body is obtained 
by replacing the three-dimensional flow by a non-steady two-dimensional 
flow, and by equating the cross-force to the rate of change of cross-flow 
momentum on a transverse lamina moving past the body with the free 
stream velocity U,,. The result obtained for the lift force L on an element 
of the body is, for small angles of attack a, 

where A is the cross-sectional area of the body, and, by integration 

where A, is the base area of the body. 
Although the fact is not generally recognized, this result is in poor 

agreement with exact calculations and with experimental data for finite 
bodies of revolution, and in order to develop a cross-flow theory for bodies 
of large thickness ratio, it is necessary to examine the assumptions of the 
simple theory. 

The main assumption is that the flow in the cross-plane is approximately 
two-dimensional. Thus, in the three-dimensional incompressible potential 
equation (using wind axes) 

the first term must be small compared with the other two. By writing 
x = ZX, y = sY ,  x = sZ,  where s is a typical width and I a typical length 
of the body, and +(x,y, x) = U, Z@(X, Y, Z ) ,  we may re-write (2) as 

dL/dx = $p U,Z (dA/dx) 2 4  

L = &p U,Z A, 2u, 

(1) 

(1 a) 

dzz + d,, + $22 = 0, (2) 

It is evident that the condition that the first term is small is that s2/Z2 < 1. 
For compressible flows satisfying the Prandtl-Glauert differential equation 
for the perturbation potential : 

where /3 = (1 - M2)1'2, the compressible flow is related to the incompressible 
flow past a body of revolution elongated in the x-direction by a factor p ,  
and the condition for two-dimensional flow in the cross-plane becomes, 
for the compressible flow, /32s2/12 < 1. For moderate values of /3, this 
condition will hold for surprisingly large values of the body thickness 
ratio. (For a 20" cone, for instance, s2/Z2 + 0.1.) 

rB2dxx + d,, + dm = 0 (4) 
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In order to calculate the cross-flow, it is necessary to solve the two- 
dimensional equation 

with +,, specified on the boundary. I n  the Munk-Jones approximation, 
this boundary condition becomes (using cylindrical coordinates (x, r ,  w) 

with the body shape defined by R(x)) 
d 

q$(x, R, w )  = V, cos a - R(x) + U, sin a cos w ,  
dx 

+z/U + +sz = 0 (5) 

(6 )  

(7) 

or, by superposition for the cross-flow, writing +r = q51r + &, 

for small angles of attack. 
This approximate tangency condition amounts to an assumption that 

the longitudinal component of the velocity on the body, which is the velocity 
with which the transverse lamina moves along the body, is approximately 
equal to the main stream velocity U,. This is manifestly untrue for thick 
bodies of revolution. For a 20" cone with a free stream Mach number 
of 1-3, for instance, the surface velocity is O.SUO, and the longitudinal 
component is 0.75 U,,. This suggests that an improvement to the cross-flow 
theory may be made by employing a more exact tangency condition in which 
the main stream velocity is replaced by the longitudinal component of the 
surface velocity U,(x). The lamina then moves along the body with a 
velocity Us cos 0, where 0 is the inclination of the surface to the body axis. 

C$~,.(X, R, w )  = U, a cos w 

Thus (7) becomes 

+ z T ( ~ ,  R, w )  = U, cos w a. 

dLldx = $p 77: cos20(dA/dx) 2a. 

(8) 

(9) 

The lift force on an element of the body is then 

In order to illustrate the use of this result, a comparison is made in 
figure 1 with the exact calculation by Kopal (1947) of the supersonic flow 
past yawed cones of semi-angle 0,. Since, for such AOWS, the surface 
velocity U, is constant, equation (9) may be integrated to yield 

The lift coefficient slope is then 

where U, is obtained from Kopal's calculations. To  convert the quantities 
tabulated by Kopal to the notation used here, the following relationships 
were employed : 

Us = 8,(zj2 + 2a:/(y - 1)}ll2, and C L ~  = CAT, - C,, 
where CN% = SKx/m-, C,= 8K,/.rr, 
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The results given in figure 1 for cones of semi-angle lo", 20" and 30" 
show that the present method gives good agreement with the exact results 
for cones up to 30" semi-angle, and correctly predicts the variation of C L ~  
with Mach number for quite large Mach numbers. This implies that the 
cross-flow close to the body remains approximately two-dimensional even 
for cases in which the parameter P2s2/l2 becomes large. The Munk-Jones 
value CL, = 2(radian)-l is also shown on the figure. 
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Figure 1.  Variation of lift force slope with Mach number for supersonic flow past 
inclined cones. 

The method has also been employed by the author (Cox & Maccoll 
1956) for calculating the cross-force on yawed cones in fully developed 
cavitating flow. 
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